Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 132(19)2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35925681

RESUMO

Infantile (fetal and neonatal) megakaryocytes (Mks) have a distinct phenotype consisting of hyperproliferation, limited morphogenesis, and low platelet production capacity. These properties contribute to clinical problems that include thrombocytopenia in neonates, delayed platelet engraftment in recipients of cord blood stem cell transplants, and inefficient ex vivo platelet production from pluripotent stem cell-derived Mks. The infantile phenotype results from deficiency of the actin-regulated coactivator, MKL1, which programs cytoskeletal changes driving morphogenesis. As a strategy to complement this molecular defect, we screened pathways with the potential to affect MKL1 function and found that DYRK1A inhibition dramatically enhanced Mk morphogenesis in vitro and in vivo. Dyrk1 inhibitors rescued enlargement, polyploidization, and thrombopoiesis in human neonatal Mks. Mks derived from induced pluripotent stem cells responded in a similar manner. Progenitors undergoing Dyrk1 inhibition demonstrated filamentous actin assembly, MKL1 nuclear translocation, and modulation of MKL1 target genes. Loss-of-function studies confirmed MKL1 involvement in this morphogenetic pathway. Expression of Ablim2, a stabilizer of filamentous actin, increased with Dyrk1 inhibition, and Ablim2 knockdown abrogated the actin, MKL1, and morphogenetic responses to Dyrk1 inhibition. These results delineate a pharmacologically tractable morphogenetic pathway whose manipulation may alleviate clinical problems associated with the limited thrombopoietic capacity of infantile Mks.


Assuntos
Megacariócitos , Trombocitopenia , Actinas/metabolismo , Plaquetas/metabolismo , Humanos , Recém-Nascido , Megacariócitos/metabolismo , Fenótipo , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Trombocitopenia/genética , Trombopoese/genética , Quinases Dyrk
2.
J Clin Invest ; 127(6): 2365-2377, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28481226

RESUMO

Hematopoietic transitions that accompany fetal development, such as erythroid globin chain switching, play important roles in normal physiology and disease development. In the megakaryocyte lineage, human fetal progenitors do not execute the adult morphogenesis program of enlargement, polyploidization, and proplatelet formation. Although these defects decline with gestational stage, they remain sufficiently severe at birth to predispose newborns to thrombocytopenia. These defects may also contribute to inferior platelet recovery after cord blood stem cell transplantation and may underlie inefficient platelet production by megakaryocytes derived from pluripotent stem cells. In this study, comparison of neonatal versus adult human progenitors has identified a blockade in the specialized positive transcription elongation factor b (P-TEFb) activation mechanism that is known to drive adult megakaryocyte morphogenesis. This blockade resulted from neonatal-specific expression of an oncofetal RNA-binding protein, IGF2BP3, which prevented the destabilization of the nuclear RNA 7SK, a process normally associated with adult megakaryocytic P-TEFb activation. Knockdown of IGF2BP3 sufficed to confer both phenotypic and molecular features of adult-type cells on neonatal megakaryocytes. Pharmacologic inhibition of IGF2BP3 expression via bromodomain and extraterminal domain (BET) inhibition also elicited adult features in neonatal megakaryocytes. These results identify IGF2BP3 as a human ontogenic master switch that restricts megakaryocyte development by modulating a lineage-specific P-TEFb activation mechanism, revealing potential strategies toward enhancing platelet production.


Assuntos
Megacariócitos/fisiologia , Proteínas de Ligação a RNA/fisiologia , Animais , Proliferação de Células , Feminino , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Hematopoese , Células-Tronco Hematopoéticas/fisiologia , Humanos , Recém-Nascido , Células K562 , Camundongos Endogâmicos C57BL , Ativação Transcricional
3.
Blood ; 127(26): 3398-409, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27114459

RESUMO

Recently, interactions between thrombopoietin (TPO) and its receptor, the myeloproliferative leukemia (MPL) virus oncogene, have been shown to play a role in the development and progression of myeloproliferative neoplasms including myelofibrosis (MF). These observations have led to the development of strategies to disrupt the association of TPO with its receptor as a means of targeting MF hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs). In this report, we show that although both splenic and peripheral blood MF CD34(+) cells expressed lower levels of MPL than normal CD34(+) cells, TPO promoted the proliferation of MF CD34(+) cells and HPCs in a dose-dependent fashion. Furthermore, the treatment of MF but not normal CD34(+) cells with a synthesized MPL antagonist, LCP4, decreased the number of CD34(+)Lin(-) cells and all classes of assayable HPCs (colony-forming unit-megakaryocyte [CFU-MK], CFU-granulocyte/macrophage, burst-forming unit-erythroid/CFU-erythroid, and CFU-granulocyte/erythroid/macrophage/MK) irrespective of their mutational status. In addition, LCP4 treatment resulted in the depletion of the number of MF HPCs that were JAK2V617F(+) Moreover, the degree of human cell chimerism and the proportion of malignant donor cells were significantly reduced in immunodeficient mice transplanted with MF CD34(+) cell grafts treated with LCP4. These effects of LCP4 on MF HSCs/HPCs were associated with inhibition of JAK-STAT activity, leading to the induction of apoptosis. These findings demonstrate that such specific anti-cytokine receptor antagonists represent a new class of drugs that are capable of targeting MF HSCs.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Mielofibrose Primária/tratamento farmacológico , Receptores de Trombopoetina/antagonistas & inibidores , Idoso , Substituição de Aminoácidos , Animais , Antígenos CD34/genética , Antígenos CD34/metabolismo , Feminino , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/patologia , Xenoenxertos , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Mielofibrose Primária/genética , Mielofibrose Primária/metabolismo , Mielofibrose Primária/patologia , Receptores de Trombopoetina/genética , Receptores de Trombopoetina/metabolismo
4.
Exp Hematol ; 42(2): 137-45.e5, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24309210

RESUMO

The tumor suppressor p53 is thought to play a role in megakaryocyte (MK) development. To assess the influence of the p53 regulatory pathway further, we studied the effect of RG7112, a small molecule MDM2 antagonist that activates p53 by preventing its interaction with MDM2, on normal megakaryocytopoiesis and platelet production. This drug has been previously been evaluated in clinical trials of cancer patients where thrombocytopenia was one of the major dose-limiting toxicities. In this study, we demonstrated that administration of RG7112 in vivo in rats and monkeys results in thrombocytopenia. In addition, we identified two distinct mechanisms by which RG7112-mediated activation of p53 affected human megakaryocytopoiesis and platelet production in vitro. RG7112 promoted apoptosis of MK progenitor cells, resulting in a reduction of their numbers and RG7112 affected mature MK by blocking DNA synthesis during endomitosis and impairing platelet production. Together, the disruption of these events provides an explanation for RG7112-induced thrombocytopenia and insight into the role of the p53-MDM2 auto-regulatory loop in normal megakaryocytopoiesis.


Assuntos
Antineoplásicos/farmacologia , Imidazolinas/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Trombopoese/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Animais , Feminino , Humanos , Masculino , Camundongos , Contagem de Plaquetas
5.
PLoS One ; 8(1): e55145, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23372829

RESUMO

BACKGROUND: Breast cancer cell lines are widely used tools to investigate breast cancer biology and to develop new therapies. Breast cancer tissue contains molecularly heterogeneous cell populations. Thus, it is important to understand which cell lines best represent the primary tumor and have similarly diverse phenotype. Here, we describe the development of five breast cancer cell lines from a single patient's breast cancer tissue. We characterize the molecular profiles, tumorigenicity and metastatic ability in vivo of all five cell lines and compare their responsiveness to 4-hydroxytamoxifen (4-OHT) treatment. METHODS: Five breast cancer cell lines were derived from a single patient's primary breast cancer tissue. Expression of different antigens including HER2, estrogen receptor (ER), CK8/18, CD44 and CD24 was determined by flow cytometry, western blotting and immunohistochemistry (IHC). In addition, a Fluorescent In Situ Hybridization (FISH) assay for HER2 gene amplification and p53 genotyping was performed on all cell lines. A xenograft model in nude mice was utilized to assess the tumorigenic and metastatic abilities of the breast cancer cells. RESULTS: We have isolated, cloned and established five new breast cancer cell lines with different tumorigenicity and metastatic abilities from a single primary breast cancer. Although all the cell lines expressed low levels of ER, their growth was estrogen-independent and all had high-levels of expression of mutated non-functional p53. The HER2 gene was rearranged in all cell lines. Low doses of 4-OHT induced proliferation of these breast cancer cell lines. CONCLUSIONS: All five breast cancer cell lines have different antigenic expression profiles, tumorigenicity and organ specific metastatic abilities although they derive from a single tumor. None of the studied markers correlated with tumorigenic potential. These new cell lines could serve as a model for detailed genomic and proteomic analyses to identify mechanisms of organ-specific metastasis of breast cancer.


Assuntos
Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Animais , Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Antígeno CD24/metabolismo , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Receptor alfa de Estrogênio/metabolismo , Feminino , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Receptores de Hialuronatos/metabolismo , Camundongos , Metástase Neoplásica , Células-Tronco Neoplásicas , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Células da Side Population , Tamoxifeno/farmacologia , Transplante Heterólogo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
6.
Exp Hematol ; 41(2): 155-166.e17, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23261964

RESUMO

Red cell production is primarily determined by the action of erythropoietin. Additional erythropoiesis-regulatory factors include molecules and cellular interactions occurring within the bone marrow (BM) microenvironment. Sotatercept (ACE-011) is an activin receptor ligand trap that binds several members of the TGF-ß superfamily. Treatment with ACE-011 reverses bone loss and reduces the degree of osteoporosis, but it is accompanied by elevated hemoglobin and hematocrit levels. The mechanisms underlying the beneficial effects of ACE-011 on red cell production remain unknown. This study explores the means by which ACE-011 promotes erythropoiesis. We showed that ACE-011 does not directly affect erythroid differentiation of human CD34(+) cells in vitro. We next tested whether ACE-011 acts indirectly by affecting BM accessory cells. Conditioned media produced by BM stromal cells (SCs) inhibited erythroid differentiation of CD34(+) cells while maintained their ability to proliferate. However, conditioned media from SCs treated with ACE-011 partially restored erythropoiesis, coinciding with changes in the molecular and secretory profile of SCs, including the expression and secretion of erythropoiesis-modulatory factors. We conclude that inhibitory factors produced by BM SCs in vitro might control erythropoiesis in vivo and that agents that reverse these microenvironmental signals could provide an approach to attenuate anemia in clinical conditions.


Assuntos
Receptores de Activinas Tipo II/antagonistas & inibidores , Células Precursoras Eritroides/efeitos dos fármacos , Eritropoese/efeitos dos fármacos , Células Estromais/efeitos dos fármacos , Adulto , Células Sanguíneas/citologia , Células Sanguíneas/efeitos dos fármacos , Células Sanguíneas/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células Cultivadas/citologia , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/metabolismo , Ensaio de Unidades Formadoras de Colônias , Meios de Cultivo Condicionados/química , Citocinas/biossíntese , Citocinas/genética , Citocinas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/metabolismo , Eritropoese/fisiologia , Sangue Fetal/citologia , Perfilação da Expressão Gênica , Humanos , Técnicas In Vitro , Células K562/citologia , Células K562/efeitos dos fármacos , Células K562/metabolismo , Ligantes , Especificidade de Órgãos , RNA Mensageiro/biossíntese , Proteínas Recombinantes de Fusão , Células Estromais/fisiologia
7.
Blood ; 120(15): 3098-105, 2012 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-22872685

RESUMO

Interferon (IFN-α) is effective therapy for polycythemia vera (PV) patients, but it is frequently interrupted because of adverse events. To permit the long-term use of IFN, we propose combining low doses of IFN with Nutlin-3, an antagonist of MDM2, which is also capable of promoting PV CD34(+) cell apoptosis. Combination treatment with subtherapeutic doses of Peg IFN-α 2a and Nutlin-3 inhibited PV CD34(+) cell proliferation by 50% while inhibiting normal CD34(+) cells by 30%. Combination treatment with Nutlin-3 and Peg IFN-α 2a inhibited PV colony formation by 55%-90% while inhibiting normal colony formation by 22%-30%. The combination of these agents also decreased the proportion of JAK2V617F-positive hematopoietic progenitor cells in 6 PV patients studied. Treatment with low doses of Peg IFN-α 2a combined with Nutlin-3 increased phospho-p53 and p21 protein levels in PV CD34(+) cells and increased the degree of apoptosis. These 2 reagents affect the tumor suppressor p53 through different pathways with Peg IFN-α 2a activating p38 MAP kinase and STAT1, leading to increased p53 transcription, whereas Nutlin-3 prevents the degradation of p53. These data suggest that treatment with low doses of both Nutlin-3 combined with Peg IFN-α 2a can target PV hematopoietic progenitor cells, eliminating the numbers of malignant hematopoietic progenitor cells.


Assuntos
Imidazóis/farmacologia , Interferon-alfa/farmacologia , Janus Quinase 2/genética , Mutação/efeitos dos fármacos , Piperazinas/farmacologia , Policitemia Vera/tratamento farmacológico , Polietilenoglicóis/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteína Supressora de Tumor p53/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Western Blotting , Quimioterapia Combinada , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/patologia , Humanos , Técnicas In Vitro , Mutação/genética , Policitemia Vera/genética , Policitemia Vera/patologia , Reação em Cadeia da Polimerase , Proteínas Recombinantes/farmacologia , Células Tumorais Cultivadas
8.
Exp Hematol ; 40(7): 564-74, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22381681

RESUMO

Drug-induced thrombocytopenia often results from dysregulation of normal megakaryocytopoiesis. In this study, we investigated the mechanisms responsible for thrombocytopenia associated with the use of Panobinostat (LBH589), a histone deacetylase inhibitor with promising anti-cancer activities. The effects of LBH589 were tested on the cellular and molecular aspects of megakaryocytopoiesis by utilizing an ex vivo system in which mature megakaryocytes (MK) and platelets were generated from human primary CD34(+) cells. We demonstrated that LBH589 did not affect MK proliferation or lineage commitment but inhibited MK maturation and platelet formation. Although LBH589 treatment of primary MK resulted in hyperacetylation of histones, it did not interfere with the expression of genes that play important roles during megakaryocytopoiesis. Instead, we found that LBH589 induced post-translational modifications of tubulin, a nonhistone protein that is the major component of the microtubule cytoskeleton. We then demonstrated that LBH589 treatment induced hyperacetylation of tubulin and alteration of microtubule dynamics and organization required for proper MK maturation and platelet formation. This study provides new insights into the mechanisms underlying LBH589-induced thrombocytopenia and provides a rationale for using tubulin as a target for selective histone deacetylase inhibitor therapies to treat thrombocytosis in patients with myeloproliferative neoplasms.


Assuntos
Plaquetas/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Megacariócitos/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Trombopoese/efeitos dos fármacos , Tubulina (Proteína)/metabolismo , Acetilação/efeitos dos fármacos , Plaquetas/citologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Neoplasias Hematológicas/dietoterapia , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Inibidores de Histona Desacetilases/efeitos adversos , Humanos , Ácidos Hidroxâmicos/efeitos adversos , Indóis , Megacariócitos/citologia , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/metabolismo , Transtornos Mieloproliferativos/patologia , Panobinostat , Processamento de Proteína Pós-Traducional/fisiologia , Trombocitopenia/induzido quimicamente , Trombocitopenia/metabolismo , Trombocitopenia/patologia , Trombopoese/fisiologia
9.
J Immunol ; 184(6): 2814-24, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20147631

RESUMO

Sexually transmitted infections increase the likelihood of HIV-1 transmission. We investigated the effect of Neisseria gonorrheae (gonococcus [GC]) exposure on HIV replication in primary resting CD4(+) T cells, a major HIV target cell during the early stage of sexual transmission of HIV. GC and TLR2 agonists, such as peptidylglycan (PGN), Pam(3)CSK(4), and Pam(3)C-Lip, a GC-derived synthetic lipopeptide, but not TLR4 agonists including LPS or GC lipooligosaccharide enhanced HIV-1 infection of primary resting CD4(+) T cells after viral entry. Pretreatment of CD4(+) cells with PGN also promoted HIV infection. Anti-TLR2 Abs abolished the HIV enhancing effect of GC and Pam(3)C-Lip, indicating that GC-mediated enhancement of HIV infection of resting CD4(+) T cells was through TLR2. IL-2 was required for TLR2-mediated HIV enhancement. PGN and GC induced cell surface expression of T cell activation markers and HIV coreceptors, CCR5 and CXCR4. The maximal postentry HIV enhancing effect was achieved when PGN was added immediately after viral exposure. Kinetic studies and analysis of HIV DNA products indicated that GC exposure and TLR2 activation enhanced HIV infection at the step of nuclear import. We conclude that GC enhanced HIV infection of primary resting CD4(+) T cells through TLR2 activation, which both increased the susceptibility of primary CD4(+) T cells to HIV infection as well as enhanced HIV-infected CD4(+) T cells at the early stage of HIV life cycle after entry. This study provides a molecular mechanism by which nonulcerative sexually transmitted infections mediate enhancement of HIV infection and has implication for HIV prevention and therapeutics.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/microbiologia , HIV-1/imunologia , Neisseria gonorrhoeae/imunologia , Fase de Repouso do Ciclo Celular/imunologia , Receptor 2 Toll-Like/metabolismo , Transporte Ativo do Núcleo Celular/imunologia , Sequência de Aminoácidos , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Linhagem Celular , Células Cultivadas , Infecções por HIV/imunologia , Infecções por HIV/microbiologia , Infecções por HIV/transmissão , Humanos , Dados de Sequência Molecular , Receptor 2 Toll-Like/agonistas , Receptor 2 Toll-Like/fisiologia
10.
Bioconjug Chem ; 20(9): 1711-5, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19689127

RESUMO

A persulfated molecular umbrella derived from one spermine, four lysine, and eight deoxycholic acid molecules was found to exhibit ionophoric activity, as shown by pH discharge and Na(+) and Cl(-) transport experiments. In sharp contrast, a moderately more hydrophilic analogue derived from cholic acid showed no such ionophoric activity. Both molecular umbrellas crossed liposomal membranes by passive transport with experimental rates that were similar. These findings show how the interactions between such amphomorphic molecules and phospholipid bilayers are a sensitive function of the umbrella's hydrophilic/lipophilic balance (HLB). They also raise the possibility of exploiting molecular umbrellas in fundamentally new ways.


Assuntos
Ácido Desoxicólico/química , Ionóforos/síntese química , Lisina/química , Espermina/química , Transporte Biológico , Cloretos/metabolismo , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Lipossomos , Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...